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In the Present work the authors continue the investigations [l to 63 of the 
time-optimal operations in linear Systems with constant coefficients. The 
Control Vector is assumed to be one-dimensional and bounded with respect to 
the (timpulse" 16-j. This means that the time integral of the modulus of the 
control vector does not exceed some positive constant ril . Second order 
systems are investigated and the conditions of existence of time-optimal 
operations (*) between the points (x 0, x,,J and (x1, n,) of the phase plane, 
are determined. We show that, when These conditions are satisfied, then an 
operation of duration T(rlo, xp, .Q, x,) is actuated by the impulses 
~1 (x10 9 x.0, ~1, 2,) and ~a(xlo > Tao, ~1, ro ) , the number of which Is not 
greater than two. Conditions of continuity and $ifferentlabllity of the 
functions T, p1 and )la and of the functions 
ta(X1o , xao, xl, x,) defining the relation betwie!?% %?I; %"a$~ar~~e of 
the impulses p1 and pa and the coordinates of the Initial and final points 
are derived; a geometrical interpretation is also given. 

1, Let the system of equations 

dl-1 dX, - 1 

dt wn + u12~2 + hut, - == a2cl+ a22T2 + f-w3 dX 
be given, where u, is a scalar control. Directing the x,-axis of the basic 

coordinate system along the vector b,l. + bz$ , we obtain, using the same 

notation, dXl 
-- == altrl + a12r2, 

(ix, 
fit 

-- == azlrl + az2T2 -f b,ul 
n’ t 

If %,# 0 f then dlfferentlating the first equation with respect to time 
and eliminating xz and dx,/dt , we obtaln 

‘2 + 6d+ + c.q = dul 

If, on the other hand, a,,= 0 , then the above elimination is Impossible. 

In this case however, x1 is Independent of ul, and the system is under 

*) Prom now on the term time-optimal operation will also be referred to as 
"operation". 
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incomplete control C 3j. Let us assume that the system Is under complete 

control, and introducing the notation 

5 = 51, x'= dx,/dt, du, := u, x” : dx’l dt 

we arrive at 

x" f bx’ + cx = u (1.1) 

for which we shall seek, at first, the operations from the point (0, 0) to 

the point (xc, x.,*) on the class of all possible scalar controls with lnteg- 

rable modulus, subject to the condition 
00 

s 
*lUldt<1 (1.2) 

0 

Let us consider the homogeneous equation 

5" + bx’ + cx = 0 

and its normal system of Independent solutions 

5 = Cl'pl (4 + c2cp2 (0, 91 (0) = 19 92 (0) = 0 

2' = c,cp,'@) + c2q72' Ml cpl'(O) = 0, cp2'(0) = 1 

In [6] the author discussed time-optimal operations from the point (Q,$) 

to the point (0, 0). Rephrasing the conditions of existence of these opera- 

tions [6] for the problem of striking the point (.Q,, xc') from the point 

(0, 0) , we obtain a theorem. 

Theorem 1.1. Time-optimal operation between the points (0, 0) 

and (x0, xc*) exists If and only if numbers elo, cpo and T > 0 exist, 

which solve the problem 

min 
Cl.Cl 

[max ) cI’p2 (T - t) + c,cp,‘(T - t) II = 1 (0 <t < T) 

CIXO + c2x’o = - 1 (1.3) 

and T > 0 solve the problem (1.3) and T has the smallest 

then T Is optimal, the optimal control u" is impulsive, 

Formula 

U0 = y,6 (t - t') + . . . + pJi (t - P) 

If ClO, o,O 
possible value, 

and is given by 

where 6(t - tl) Is the impulse 6-function, and t', . . . . tn are roots of 

I cl%2 CT - t) + c2"qJz (t - T) I = 1 

Sum of modull of control impulses v, reaches Its maximum 

IPAf - * * +lrsll= 1 
for all finite points, except the points lying on the open Interval x0= 0, 

-l< Xo.< 1 . The latter are possible terminal points for a fast operation 

with the time T = 0 , and II41 < 1 > lclzl - 0 * 

Obviously, an arbitrary time-optimal operation commencing at zero, must 

be actuated by a nonzero impulse u1 . Consequently, tl= 0 , and 

is fulfilled. 
lw2 m + c,cp,'V)I = 1 
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Let us non disregard, for the time being, t;;e second equation of (1.3) 

and putting T > 0 , let us look for the solutions c,', czo, tZ, . . . . tn of 

the problem (1.4) 

max I w2 V - t) + C&2‘ (T - t) / - 1, c&+& (T) + c2(p2’ (T) = + 1 (0 f t ss Tf 

If they solve the above problem when the right-hand side of the second 

equation of (1.4) Is equal to -1, then - cl’, -caO, I t2 . . . . ta solve 

the problem for + 1 . Let US therefore consider the case of - 1 only. 

With this assumption, a constant c3(c1, cp, 2’) always exists such, that the 

Identity in t 

CIR (T - t) + c2v2’ (T - t) E - (Pi?’ (-- Q + c3cpz (-- Q 

is fulfilled. 

Let OS, t=, . . . . tn be the solution of the problem 

maxI--&f- t> 4 cs9,(--- 01 = 1 (oatg~) 

Then Equations 

CBS(T) + ~2~2' W = 1, Iw2 (T - ti) + c2(p2' (T - t’) 1 = 1 

can be used to find cl0 and aa0. 

2. We shall attempt to solve the problem (1.5) by assigning various com- 

plex values to the roots A, and A, of the characteristic polynomial of (1.2). 

1) The roots are complex, with positive real parts 

b 1s = B f i@, 28 = - b>O, 0 < ba < 4c 

In this ca8e It is convenient to replace c3 with the phase shift cp 

392 (T - t) i- c.$p,‘(T - tf = a (es, t) = - exp (-Bt) cos ((p - ot) (cos(p)-1 (2.1) 

Since the function a(~, t) cannot be less than - 1 when t increases, 
then a*(~~, 0) I: 0 . This limits g, in the following manner: 

- &rI S cp 5 tan-‘(e/uJ) 

For any admissible cp , the nearest maximum cf the function c(rp, t) is 
reached when t(q) satisfies 

@t (9) = m + 9, - tan-’ (B / w) 

Value of the ~lrn~ of n(rp) of the function u(q, t(v)) is given by 

P ((P) = exp [(P / 0) (n + cp - tan-1 (fJ / w)) I (~0s rpf-’ cos [ tan-1 (B / 0) 1 (2.2) 

a direct check that u(m) increases as cp decreases and will be always posi- 
tive over the variation of cp within - 
(2.1) we see, that if n(cp) < 1 , then Ia p,‘t p” ‘p 

< tan-‘(@/m) , is ea3y.Hg;F 
1 c I for all t > 0 

the solution of our problem must be a function, the maximum of which L(rp)r 1. 

Let us now consider 
t(m) L t, we obtain the 

c( 
Xc 

t) such, that ~((po) - 1 . Then, putting 
I entity 

a (pto, b) = 'pl oz - 1) 

Aseumlng t - 0 , we have 
Ql (4 = - f (2.3) 

From the above we see, that t. is the smallest positive root of (2. 
which obviously always exists since B r 0 , and when t(q) c t,, 

), 
maxp cp)>l. ? 

This means, that for any T-z tar variation in rp will produce a(~, 2’) - 1. 
If, on the other hand T > t,, then a(cpo, t) is the only solution to the 



problem (1.2). 
the result. 

Returning to the initial notation a&, cZ, t) , we obtaln 

If TShta, then ta defines the instant of the second Impulse which 1s 
equal to T , and 

C1°V2 (0) + cpOqz'(0) = cc0 = 1 
If T > t,, then t8 = t,, while cllz(T - tz) + c&.’ (T - ta) = 1. 
If the roots are real and positive, 

same, and the proof Is analogous. 
then-the s;ituatlon Is exactly the 

2) Let the complex roots have negative real parts 

hl,2=$f6C, B<O 

From (2.1) and (2.2) it follows, 
rp 5 tanl(&J)t max W(V) > 1 . 

that for any admlsslble value of 
Tfiis means that all the admlsslble functions 

are monotonous and t2 can only be equal to T . In the present case how- 
ever, the lnnstant ta Is bounded from above and corresponds to the smallest 
;~;~sl;t~ma;;mwn u1 tan-l(B/m)) , 

9 "--cp, -t) t 
for this value of the angle, c'(a,O)=O, 

. 
’ Consequently, the maximum admlssible value of T = t2 can be found from 

n(-4) = - 1 (2.4) 

and t, will be the smallest positive root of this equation. 

This means that for T s t, , the instant of the second impulse tam T , 
and cp= 1 . If T> ta, then the problem (1.5) has no solution. The same 
result Is obtained if X,c k < 0 are real numbers. 

3) Let the roots differ In sign, and be different from zero, k,> 0 , 
x,< 0 * 

In this case 

a(& c3)= 
- Ale 

-Ad + &e-M _t-c3 e-w_ ,-u 

A1 - b Al- he . 

Condition c*(O, c3) 2 0 results In X,+ A,- ~2 0 . 

The derivative c*(t, c,) can become equal to zero for t > 0 only, when 

p,.&) L _ Xl2 -- c3h 

-h33-c3;La>i 

Thls inequality IS fulfilled If and only If oJ< X,, In which case Q(t,oJ) 
has a maximum ~(0~) at the point t = t(cJ) , and 

c (t, c3) = p fC3bPl 0 fC3) - t) 

Is true. 

The condition of maximum of u**(t&), c,) s 0, gives - p(ca)c 5 0 . 
Since c = a,X,<O then I.I 03) 5 0 . 
t ' t(c,) , f 

This urns 1s unique and when 
the function a t, c,) tends to - = . 

If CJ’ x, , then o(t, c,) increases monotonously to 0~ . Obviously, at 
any T , time of the second impulse ta can only be equal to T , and for 
any T, two values csl> A2 and oJac Aa can be selected, such that 
,n ;r, cy') = + 1, corresponds to the first value, and a (T, cf) = -1 to the 
second. 

Returnlng to the Initial constants c1 and ca, we obtain t2= !i", cal = j-1, 
c22 = --I 

4) Let the roots AI*= f tw be purely Imaginary. 

Reasoning as in (l), we obtain that, when T < n/w = t,, the solution of 
(1.4) Is of the form cc= + 1.P = T. If T 2 n/u, then some other solutions 
may appear. 
exist. 

Below we shall show that operations with time T 2 n/w do not 

5) Let X,z 0 , Xa- 0, then, we have 
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becomes a nondecreas- 
Consequently, c3<-X1 

can always be expressed so, as to have This will be the 
first solutiqn of the problem. I;, gives a(t, c,) p -1. 

Hence the first solution is t2= T 
cz= - 1 to < t2, T) 

ca= 1 while the second one is 
, and the instant i' remain; undefined. 

6) Let X,X 0 , AI= 0 . Using the same scheme, we reach the conclusion 
that two solutions of (1.4) are possible. They are 

es= 1, ts = T (First solution)c, = -1, 0 < tZ< T (Second solution) 

7) Let &mPL*=O. Tnen 

ca, = *, 0 <is< T(Rirst solution) C, = -1, 0 < t2< T (Second solution) 

In the following we shall show that in cases (5), (6) and (7), tlme- 
optimal operations must have t== T , 
last possible Instant. 

i.e. the second Impulse occurs at tfte 

3. Let us now return to the problem (1.3) 

min max 1 c16p2 (T - t) + c&* (T - t) 1 = min f (cl, es, T) = + 1 (0 d t < T) 
Cd% % et 

c,z, + C&’ = - 1 

Let cl', cs', T, t', . . ., t” be the solution of (1,.3), then for all x0, x; 
except x0= i v,(T) and x0'= f cp;(T) , a root ta exists. Indeed, if the 

value of unity could.only be reached at t=o, then such translation along 

the straight Ci5, f CeZo' = - 1 on the cloa-plane not coinciding with 

the straight line .C&(T) tC#s'(T) = tr: 1, could lead to J'(c%, ca, T)<l; 

this contradicts the the initial assumption that olO, oao, 2' is the solu- 

tion of (1.3). 

1) Let &s=Pf@i; B>O, T,(&, then the straight line Clxo fczX~'* 

= - 1 must pass through the point of intersection of 

CICP, (7') + Ca'Pa P') = - 1, cg = 1 (3.1) 

OP through the point B of the Intersection of 

~1% (7') + c,cp~'(T) = 1, q= -1 (3.21 

Lines (3.1) and (3.2)form a parallelogram AA'&. Pencils of lines 
o,x~+c~r~= 1 passing through points A and R , have the equations 

k.(cl~~ (T) + c,cp,'(T) + 1) + (~,f 1) = 0 

where k is the parameter of the pencil, and upper and lower signs corre- 
spond'to the points A and B, respectively. 

The l:ne :Qlxo-+cazO~ - - 1 cannot however pass through the Inside of the 
' since a small displacement along such a line into the paralle- 

z&n BAj'&' would make &l, 02, T)<l . These lines correspond to 
nonpositive values of k In the pencil, On the other hand, when all the 
points on the lines belonging to the pencil except the points A and B 
have nonnegative values of R , then f(oI, oat T) > 1 . From this it fol- 
lows, that the solution to (1.3) for any of these lines lies either at A 
or at B . 

The condition that k 2 0 on the x0x0* -plane gives rise to two semi-open 
straight line segments 
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These segments [a,, b,) and Lb,, a,) are shown on Plg.1, and represent 
the set of terminal points of operations with time T . 

With T changing from zero to t,, these segments rotate about the points 
b, and a,, and their end-points 
and .q,O'= f Q,'(T) 

cz2 and b, trace the curves x0= *q,(T) 
, which we shall, from now on, denote by G+ and G_ . 

If T'> tz, then, as shown before, c1 and c2 can be found from 

w2 V') + VT, V') = - 1, q(p, (T - tz) + C&Q (T - &J = + f 

or from 

VP, (2") + ca~a (T) = + 1, %%I v - t2f + %cp, v - &I = - i 

Using analogous considerations, we obtain two other segments [cz,~) and 
[b,a,) representing geometrical loci of the end-points of an operation of 
duration T > tz . 
b, and a, . 

These segments are tangent to C, and G, at the points 

It Is easy to see from the geometry of the system that, whatever IS the 
xc* , it can for some 

~~?fb,~~~, or on Ca,b,j and [b,ar): 
be found either on the segments Ca,b,) 
Hence, time-optimal operation always 

exists. Time T I t, 
from 

and the impulses )I% and wa- i(1 - 1~~ 1) can be found 

(~0%n zo) = wa VI, (zo'f sign 4 = pl(cp,'(V + $1 - 1 (3.3) 

If on the other hand T > t,, then we have 

X0% Pa - T) + Q7Pn’ (h - T) 
sign [zoOa ($a - T) + zo’cf)4’ (ta - T)] 

= Ir lcp, (ta) 

wPP’(Z2 - T) f X092- fb - T) 
sign [=09~(4-- T)+zo'rps'(t2- q 

=fk((cp;(h)+i)-f 

(3A) 

[b,:;: :'wi&i [a,&) and [b,&) 
' , the curves G and G_ together with segments to,b,) and 

define a convex region D(T) which shall 
be called the region of attalnablilty. We shall show later that &ring the 
time t5;11, no admissible control can steer the operation across the bound- 
ary of this region, but any Interior or boundary point of D(2’) can be 
reached. 

Fig. 1 

On Flg.1, the curve oclo+as represents 
also used to describe a curve representing 
Into the points cJ In time T < tat while 
Into d, In time T > t, . 

an operation (this notation le 
the operation on Figs.2 and 7) 

od, d,d, represents an operation 
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2) Let &*2 = Bf io, B<O. c onsideratlons similar to the previous ones 
give segments [a,b,) and [baa,) with fixed end-points b, and a, , the other 
end-points 
image point ~~i~?)."'In this case however 

sliding along the curves C, and G_ together with the 
changes of the region D(T) will 

terminate at the Instant t, . We should Aote that 
tlve root of equation cpl(-t,) = - 1 . 

t, is the smallest posl- 
Region D(t,) represents a set of 

terminal points of all possible operations. No operation terminating in a 
point outside the region D(t,) is possible and It will he shown below, that 
such point Is completely unattainable. Time T and the impulse )-I~ of the 
operation terminating at the point belonging to D(t,) are found from Equa- 
tions (3.3). 

3) Let Xl' 0 t )i,< 0 . In this case all four vertices of the parallel- 
ogram on the c,cz plane formed by the lines 

02 
Wz (T) -- CZ'FZ (T) = + 1, cz= +1 

are admissible to the line c1xlJ+ CzXO' = - 1 . 
Admissible orlentatlons of this line at the vertices 

A and F give rise to the segments [a,b,) and [baa,) 
of the JC~' plane,while at A' and F' they give rise 
to (a,a,] and (blb,] . These se ments form on the 
xx' plane, a parallelogram a,&% (Flg.31. 

4 

Time T and the Impulse II~ are given by (3.3), 
however the sign of the impulse pia acting on the point 
X0, x01* of [a,b,) differs from that of ui acting on 
the point no, x0; of (a,~,] . When T Y m , the 
parallelogram becomes the Interior of a strip bounded 
by the lines x'f 1 = ~,x . 

4) If ~12 = f tcu , then for T < n UI 
in the analogous manner, region D(T) i 

we obtain, 
ounded by elllp- 

tic arcs 

C+,_ [5 = f sinoz, 5' = +o cosot; 0 <<t .< 2-1 
Fig. 3 (Fig.4) and segments [a,b,) and [b,a,) . When T=n/u, 

the elllnse becomes complete. Obviousls, T is always 
smaller than &I since any point Inside the ellipse can be-reached in the 
time t < n/w . &ctlons T and p1 are given by (3.3). 

5) Let A,> 0 , X2= 0 . As before, 
[%a,) . 

we obtain the segments [a,b,) and 
The second solution of (1.5), c2= - 1 In 

which c1 and t= are undefined, remains to be lnves- 
tlgated. The line clxO + caxO= - 1 cannot inter- 
sect the line 
we have f(c2, $jE<-ll.' 

because at =--a>-1 
This means t%t x0= 0 and' 

and an operation terminating at this point 
$;'&A duration second solution does not 
give any new operatlZkY~irig.5). 

The a, a,b,b, is the region of 
attainability and as T - m , it becomes a 
strip ~‘-l~~~x<x’+l. 

then the parallelogram 

b, 
Second solution 

- 1 does not lead to any new opera- 

Fig. 4 
it becomes a parallelogram 

vertices a3b3 on the x-axis. 

7) If a,= X,= 0 , then the sides 01a2 and b,b, of a,a,b,b, are paral- 
lel to the x-axis. From the geometry It Is clear, that the operations ter- 
minating at the points of the segments [a,b,) and [b,a,) must have t2= T. 
As T-m the parallelogram becomes a strip - 1 5 x's +1 
cases (5),'(6) and (7), T and p1 

(Flk. 
(3.3 

). In 
are, of course, given by . 

4. Before beginning to discuss the contlnui‘Yy and differentlabllity of 
the time of duration of the operation of the first Impulse 
ill (ro, x0') and of the Instants 

T(rd, x02 , 
t'(rO, x0’) , t (x0, ~“2 , assumed to be the 

functions of the terminal point, we should note that t : 0 and t”= T ) 
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since ta= t, We shall therefore concentrate our attention on the func- 
tions 2(x0, x;),&nd v,(.Q, x;) We shall divide all the points x0, x0' 
into the groups of interior, boundsry and exterior points. The open segment 
X0' 0 , - 1 < xe'c + 1 will correspond to the boundar 
G, in case (l), with the boundary of l)(t,') In c&se (2 T 

Points together with 
the lines x$ttl= X,X 

in case (3), the boundary of D(w/tu) In case (4), the lines 
case (5), the boundary of D(m) In case (6) and the lines 

xc' f 1 - X,X In 
-'f 1 in case 

(7). All points which, for some T lie within 
Interior points and all the remaInI& ones 

D(T) will*%orrespond to 
- to the exterior points. 

First we shall consider the interior Point x0', x0. 
In all cases (except 1) when T> ta) the operation 
c&n be determined by t 3.3). Assuming for definiteness 
that x0> 0 in (3.3) and differentiating both parts, 
we obtain 

dr, =z (pz (T)dpl --k p14p2' (7')dT. 

dz,' = I1 + (p?‘ (‘I-)&l, ;- pf& (7')n'l' ('1.1) 

Assuming that (4.1) represents a system with unknowns 
di.tl and dT we note, that its determinant is equal to 
zero if and only if a constant e exists, satisfying 
the equalities 

e%(T) f%‘(7) = - 1, ecp,' (7') -(- cfz" (7) I_-- 0 

Using the argument similar to that of Section 2 we 
find, that T satisfies Equation ml(- L") - - 1 . 

b? This e&n only happen in case (2) when tz= T . Since 

Fig. 5 
the point is interior, the last equation is impossible, 
hence,the determinant is not equal to zero. Conse- 
quently, the operation defined by (3.3) exists In some 

neighborhood of xc, x0’. This means that for any Interior point, partial 
differentials of T and u1 exist, and are defined by (4.1). 

Analogous consideration for the case (l), T > t, leads to the same con- 
clusion. Next we shall consider the boundary points. Passing to the limit 
In (3.3) as ZO+ +U, x8'-+ e, (0 <ad' 1), gives, in the limit, T= 0, ul~(lf~. 
Substituting these values into (4.1) and remembering that the signs of the 
left-hand sides should be changed as x0- - 0 , 
for partial derivatives as x0- f 0 

we obtain the limiting values 

C a 9 e Al%= B + i0 (B>U); 
coincides with the point 

also, we shall assume that the point (xc,r{) 
be (Flg.1) of the boundary curve G_ Putting 

now T+= lim T when (x0, x0') - b: from the direction of the okgin of 
coordinates and T_- lim T when (xc, x<) - b,- 
directly from (Flg.1) that Z'_- T+- t, 

from the outside, we see 

tion b,c, is equal to zero, 
.The derivative of T In the dlrec- 

and the derivative in the direction of the tan- 
gent to G, , equals unity. 

Angle c between the tangent and the line bsa, 
hence the Inner norm&l derivative satisfies Equation' 

Is always less than TT, 

X’ 
t 

5 *, 

Fig. 6 

il 
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and ls,together with (a~~/an)+ bounded. The position 1s different however 
with the bound of the outer nor;al derlvatlve. Denoting by s the angle 
between the Integral line and bsar , we obtain 

[:)-sin 9 - co.7 3 = 0 

Since B - n as (xc, x0* ) - 
this also appiles to (au/an)_ u 

a;, the normal derivative tends to = , and 

The remaining cases fall to show any fundamental differences, therefore 
we shall just state the results. 

C a s e A12 =; B + 2% p < 0. At all polnts of 0, and C, except xc- 0, 
Xc" f 1 the Inner derliatlves exist and are finite. They tend to m 
only on aiproach to the points a3 and b, where the boundary becomes rectl- 
llnear. Onthe rectilinear parts of the bou;dary of D(t,), Inner normal 
derivatives are infinite. 

C a s e i12- f tm . Inner derivatives exist at all points of the bound- 
ary ellipse except the points xc= 0 , X0’ = f 1 . 

Case A,> 0 t x,< 0 . At points xc- 0 and n; = f 1 derivatives 
do not exist. Limit values of the derivatives on approach to the points 
x0' f 1 - klxO can be found from Formulas (4.1). 

Case k,>O, h,=O. Properties of boundary derivatives follow (5) 
of Section 3. 

Case A,<O, h,=O. Properties of boundary derivatives follow (6) 
of Section 3. 

Case X1= 0 > A2= 0 . In this case p1 and 2' are explicitly given 
by 

~~t=('qi)sign~, T==,i_+_~~~~nz,r 

which describe all their properties. 

5. Two Important remarks must be made. A hit from the 
the point (xc, x0') In time Tr Is possible If and only If c 1 

olnt (0, 0) to 
] 

min max 1 qcp, (T, - t) + cava (T, - t) 1 = h (Td > 1 
c,,cz o<-lt<T, 

(5.1) 

This means that, .lf the hit Is possible, then the decrease of T1 to T 
such that A(T) - 1 Implies, that fast operation 1s possible. This In turn 
means, that the point can be hit on1 

3 
when a fast operation terminating at 

this point 1s possible. If (xc, x0' lies outside the region llm D(T) as 
T-m, the hit 1s Impossible at all. 

Let the Initial %eserve" be different from unity 

Changing the variables Mu,- u , &cl- x we find, that the statement of 
the problem In the ul, x1, variables Is Identical to the previous one. 
Hence 

+M&(??, 2) T'=T(& $) 

and the regions of attainability can be obtained from the regions described 
previously, by M-tuple slmllarlty transformation along the x- and x*-axe0. 

Wow we shall.conslder the general case of an operation from the Initial 
point A (xl , Xl’ ) . A simple geometrical interpretation can be employed. 
Let the point A move from the Initial conditions x1, xl* along the lnte- 
gral line of Equation x"+ bx'+ cx - 0 

ZA = zlvl (t) + 21'(p1 (t), ZA' = t#$)l'(l) + & 'Pa' @) (5.2) 

We shall consider consecutive positions of the point A with Increasing 
f and construct, for each of these positions, a region of attainability 
DA(t) with Its *center" at A , The set of closed regions DA(t), 0 *t < t, 
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also forms a closed region (*) C(t,) , An operation Y'(x,,,..., xl ‘) term- 
inating at any interior point of this region, is possible. To shed more 
light on the properties of the function T(x,, ,,.., x,') we shall lnvestl- 
gate the structure of the boundary of C(t,) in more de&l. 

At any time t, , 
the following types, 

1") Boundary of 

the boundary of C(t,) can be composed of segments of 

DA(O) is a line 

2 = 51, 51 - i<X’\<Xi+l (5.3) 

and the boundary of C(t,) may include parts, or the whole of this line. In 
the following however, when the curve Is stipulated, the last condition shall 
not be discussed. 

fl Trajectories of vertices a, and b, 

x= z*, 2' = ZA' f 1 (5.4) 

3) Families of envelopes of the c&lllnear segments of the boundary. 
Obviously, such an envelope will be the Integral line of Equation x"+br'+ox=O 

5 = Cl% + qk2~ X’ = CI’p1’ + C&’ (5!5) 

47 Families of envelopes of the rectilinear segments of the boundary. 
We shall write the equation of such a segment as 

x - x* = '&AT, (t), 5' - XA' = fh (f&' (t) + 1),T i (5.6.1) 

or In the form 

5 - x_J = f h IT%(t) - (P2 (t - @I +% (t - t2) 

z' - XA' = f ?u [cpa' (t) - 'Pa' (t - &)I +cpz* (t - +) 
(5.6.2) 

for the case (1) when t > t, . Here 0 < X 5 1 Is a positive parameter, 
and the first combination of signs corresponds to the segment (b,a,] (or 
(&a411 , while the second one to the segment (a,b,] (or (a, b,]) . 

Differentiating (5.6.1) with respect to t with x and X' kept constant, 
we obtain 

- x'_J = +x'p, *@'s, -xA" = rt1L' (%' + 1) f Q,” (5.6.3) 

Substituting X obtained from these equations Into (5.6.1), we obtain 
e 
X 7 

uatlon of the envelope which will coincide with the boundary only when 
t) which Is a solution of (5.6.3), satisfies the Inequality 0 5 h(t) s 1 

This condition Is necessary for the point of the envelope to be on the bound: 
ary of DA(t) . 

5") Pieces of the boundary of DA(t,). 

In general, construction of the region C(t,) is difficult In the sense, 
that the equation of Its boundary will depend on five parameters, name1 
and X, which are the roots of characteristic equation, x,/M and xl'M P 

L1 

which are the normalized coordinates of the initial point, and on t,. . With 
the above parameters fixed, we must construct all the curves'(5.3) to (5.6), 
together with segments of the boundary of DA(t,) for 0 s t s t, . 

Some of these curves may be found to be completely Inside 
others may have some of their parts lying on the boundary. 

c(t,) , while 

The set of these parts constitutes the boundary of the region C(t,). We 
should note that a segment of the boundary of 
region C(t{) when t:> t, . 

C(t,) may be found lnslde the 
This most certainly will happen to the parts 

of the boundary representing segments of the boundary of DA(t ) 
t1'- t,+ bt , they will completely penetrate into the region 
exception perhaps, 

C& $%th 

this segment. 
of the end-points of the sections of curves composing 

It Is Intuitively obvious, that at any Interior point of this 
segment time of the operation will depend continuously on the Initial and 

*) When t = 0, the region of attainability Is represented by a segment 
Jc =x1, - 1 + Xl.5 2 i X1. + 1 
of the boundary. 

and It can be regarded as a closed segment 
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f lnal point, and will be continuously differentiable at all its interior 
points except the vertices. 

Fig. 8 

Returning to the parts of the boundary 
of the type (5.3) to (5.6) we shall note, 
that an?? Interior oolnt of such a part can 
be found Inside the region C,(t,+-c,t) only 
for some finite period of time At OF, it 
may, during the whole period, remain on the 
boundary. From this It follows that, if at 
t = t, point (xc, x0*) is the Interior point 
of the part of the boundary of the type 
(5.3) to (5.6), then time of the operation 
terminating at this point, exhibits a dis- 
continuity. If the point lies at the end 
of one of the pieces, then the time of oper- 
ation can be continuous only, when this point 
is also the end-point of the part of DA(t,). 

As an example of construction of a region 
c(t,) , we shall consider the case 

il!, = f i: II < 0, 21' > 0, 512 + q's > 1. 

The region .C, 
oo,s,ble (Pig. 

tl) 

ii3 

(t,< TT) Is bounded by 
while region C,(n) is 

bounded by ab’ “d”de . 
Its boundary is composed of: 

A se ment 
type (5.3 f 

es which is D(0) of the 
. 

it';' 
Parts of circles 04, and eb, with 

R =OV q2 +. x1.2 and centers on the 
They are the tra- 

jectories of the points c, and 4 > ;f-the'tyzea :5?4$.' 

Parts of circles b'b" of radius R,= A + 1 and d’d” of radius R2=R-1 
with centers at the origin. They are the envelopes of curvilinear parts of 
the boundary and are of the type (5.5). 

Broken line qh4 which Is a part of the boundary of ‘DA(~, 
t 
and con- 

sists of an arc of a unit circle with Its center at the point A tl) and a 
straight line segment a,b, . Last two parts are of the type (5.7). 

Unit semi-circle 
boundary of DA(t,) 

b"d" with center at A(r) . !Chls Is the part of the 

6;. Let us now construct some analytical criterions of continuity and 
dlfferentlablllty of the functions 

T (z,, . . ., zo’), ~1 (11, . . ., q,‘), t’ (~1, . . ., z,‘), ta (q, . . ., 50’) 
Here it will be convenient to use a moving coordinate system AXX’, its 

origin at the point A and Its axes paralley to the axes bf the basic sys- 
tem. The terminal point P of the operation will, with respect to these 
axes, move according to 

ZB = xO - XA (t), ZB’ = 30’ - XA’ tt) 

In the f'ollowlng, all coordinates and velocities of the points will be 
considered In the new coordinate system. 

Let us Introduce the velocity of a.polnt belonging to the rectilinear 
part of the boundary of n”(t) 

On the curvilinear parts of the boundary, i.e. on C,, we shall assume 
h-l, and we shall call the vector whose components are 

xc = ZB - Vl - x0 9 

the "velocity 01 penetration". 

XL’ - xB - v2 
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If the first intersection of the boundary of the region with the trajec- 
tory 2~~ zB takes place at the point (zE, 
segment of the boundary and the time is t 

zx’) belongIng to the reCtllinear 

meter h can be found from Equations 
I t, , then the value of the Para- 

5E = &A% (tl)v XE' = * 1 (cp,' 01) + 1) I!z 1 (6.i.i) 

or, in case (1) of Section 3 at tI> t, , from 

XE = f h I% @I) - cpa ($1 - Gz)l f% (11 - a (6.1.2) 

2s’ = fI 3. Irp,’ @lf ---‘Pa’ 01 - &%)I f [Pa’ (4 - &z) 

Second equation of each system covers the Case, when the first one become8 
an identity. 

We shall also consider the region D’(ti) no longer as a set of termlnal 
points of operatlons when the time T titt,, but as a set of the end-points 
‘of economical trajectories with fixed time t, and minimum value of 

co 
min lujdt=v 

s 
0 

Lemma 6.1. When v - 1 , the set of the end-points of eCOnOtiCa1 
trajectories represents the boundary of the region DA(t,) , while at v<l, 

the boundary contracts by the factor of l/v . 

To prove it, we shall first obtain, repeating exactly the reasoning of 
[6], the following theorem. 

Theorem 6.1. The necessary and sufficient condition for the 

economical trajectory from the point (0, 0) to the point (x0, xd) with fixed 
t and v - 1 to exist is, that op and 001 are solution of the problem 

min mx 1 c,cp, ftl - t) + c,rp,’ (tt - t) 1 = 1, 
Ctt Cl oegt, 

c$co + c,aT#j* = - 1 

If 0,' and 0," are the solution of this problem and t’ , ta , -. ., t’ 
are the roots of the first equation, then the economical control is ImpulSiVe 
and sum of the modull of Its mulses lcr, 1 + . . . + 1~. 1 - 1 . Omlttlrw the 
details of construction of economical trajectories a6 they are alt!@St an 
exact repeat of those given for the operations, we shall just quote their 
properties. 

Economical trajectory 
coincides, In all cases 
termlnatlng at that point. 

at the rectilinear part of the boundary 
RsX < 0 , t,> tD) , with the operation 

Economical trajectory termlnatlng at the point on the curvlllnear part 
of the boundary or at the point on the rectlllnear part in case Re X < 0 , 
t,< ts , csn be constructed as follows. 

Let (xe, x0*) lie on the curvilinear part and lot T(xs, xi) be the time 
of the operation terminating at that point. Then, the economical tra’ajectory 
follows geometrically the path of the operation, but t’ - the Instant of the 
first impulse 
t’= t,- !&To, 

1~ 1 - 1 , ie delayed by the amount of tirae resulting ln 
4 * x0 

If, In the case (2) [Re A < 0 , t,c ta] 
linear part of the boundary Ilfts) and t,> t: 

(~0, x0*) lies on the. rectl- 
, then geometrically operation 

coincides with the economIcal trajeotory, but t’=t,-tt, * 
In case %s,= *iw, t,>n/o , economical trajectories are no lo er 

single-valued, and an eaonomlcal at the point f x,.x;) 
ean have its first Impulse either 
- r(ro, a.1 - m/uJ - 

or at tl- t,- 
Such cases may occur when Re A,- 0 , X1> 0 , or when 

Re Al- 0 , A,> 0 , or &I A,- 0 . Later we shall see, that detailedarrilys3.s 
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of these cases is not necessary. 

Turning our attention to V(X ,,, x0', Cl) which represents the cons~pt~on 
on the economical trajectory originating at zero and which we shall consider 
as a function of the terminal point, we shall state some of its properties 
without proof. 

At any fixed t,> 0 , function v(x,, rd, t, ) exists over the whole space, 
is positive definite and becomes Infinitely large as nOa+ x;'- 0~ . For any 
given t, , v (x0, xcl-3 t) > Y (x0, 20’. tJ, 0 < 1 5: 11. 

Geometrically it is obvious that the lines Y i+ &I, I - 
represent the boundary of Dft,) transformed x-times. 

. t)--=const>O, 
Denoting by V the 

angle between the radius vector of the point (x0, x$) and the x-axis dw B 
the angle between the r-axis and the tangent to the bounddry, we have 

Determinant of this system A = sin{* - 8) is different from zero, since 
the angle between the radius vector and the tangent $ - e is contained 
within the limits 0 < $ - 6 c n . 

Angle B undergoes 8 dXscontinuous change at all vertices of the bound- 
ary, consequently derivatives a&x., and av/ax,’ are also discontinuous. 
First formula of the system (6.2) glvea a derivative in the direction of the 
radius vector, the second one - along the boundary. 

Returning now to the initial problem, we shall prove a theorem. 

Theorem 6.2. If the velocity of penetration vector is directed 

into the region D(t,) , then the time of operation Z'(xO, . . . . 2":) is a 
continuous function of its variables, If, in addition, point :f Intersection 

(xE, 2~') of the trajectory of the point R with the boundary of o(tl) Is 

not a vertex, then T(xo, . . . . x;) is also continuously differentiable. If, 

on the other hand, the velocity of penetration is tangential to the boundary 

or is directed outward, then the time of operation is discontinuous. 

Proof . Time T of the operation Is the smallest positive root of 

v(zgr Q', t)= 1 (6.3) 

2R = z* - zi% 0) - xi% 019 XR' = q' - Wl' 0) - zitps 0) 

If the velocity of penetration Is directed into the region, then for 
small At, we have 

V(zs(T+At), +*(T + At), T+At)<f 

This msans,that _a continuous solution 2(x,,, TV', x1, r<) of Equation (6.3) 
exists near a, xer x1, x1* . Differentiating (6.3), we obtain 

dzg’.= aza” dt + dxo’ - ‘~1 (t) dxl - pn’ (1) dsl’ 

(6.4) 

Partial derivatives .avlat, and avlaxB' exist and are continuous at a11 
polnts.except the vertices, and the coefficient of dt in (6.4) obtained 
with (6.5) taken Into account, is less than zero. The latter follows from 
the requirement that the vector of the velocity of penetration is orientated 
In a certain direction. From this, the continuity of partial derivatives of 
T'(xo,...> x;) follows. 

If the velocity of penetration vector is tangent to the curvilinear part 
of the boundary, then such e - const exists, that, when t - t, , then 
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wl’ (tl) -k (x1’ - e)rp,’ (h) = 0, zl’pl” (tl) -t- (2,’ - e)cp,” (II) = 0 (G.fi) 
which means that &he are Identically satisfied, and point B moves along 
the boundary of D(t 3 . A small displacement to the next Integral line will 
cause a discontinuity In T . 

If the velocity of penetration Is collnear with the straight line segment, 
then a constant e exists such, that 

-5*' = f ecp2 .+N+z'~ _TA" = f_ ecF2' -rt W!" (6.7) 

These equations confirm that the point (X0, xi) lies on the envelope (5.6) 
since they give rise to the same set of values of X , as (5.6.3). 

Let us now assume that the velocity of penet?atlon Is dire.cted out of the 
region D(tl) . This can happen only when the point ( XE, XE ) coincides 
with a vertex of D(t,), since otherwise 
(6.3). 

t, would not be the first root of 
If this point a, or b, Is fixed with respect to the moving systgm, 

then the time Is discontinuous and point (X0, ~0') belongs to the segment of 
the boundary of the type (5.4). 

Moving vertex travels, 
line of x"+ bx’+ox = 0 , 

with respect to a fixed system, along the integral 
and the corresponding impulse is pl- 1 at t - 0. 

If the point (x,,, x2) lies on this line, then it 1s clear that when t-t,+At,, 
Its velocity of penetration Is tangent to the boundary, and the time of oper- 
ation Is discontinuous. 

At t,=O, the statement that the velocity of penetration Is directed 
into the region D(0) ls'meanlgless. We can however say that at the points 
x = x1, w<- 1 5 X*S Xi'+1 for which the limiting VdU62 of the velocity Of 
penetration vector 1s directed into the region D(tl) as t,- 0 , the time 
of the operation 1s continuous, while at the points where it 1s either 
directed outward or equal to zero, the time Is discontinuous. The proof of 
this Is analogous to the previous case. 

7. Having explained the properties of the function T(Xo, X0*, X1, X1* ), 

we shall next consider all possible distributions of rootg on the complex 

plane. Let Q, xE’ be the coordinates of the point of intersection of the 

curve x~, 5~’ with the boundary of D(t,), or D(2') . Denoting as before 

the time of operation from zero to the point x, a! by T(x, x*) and the 

value of Its first Impulse by ul(X,,Y), the value of the first Impulse In 

the operation from (xl, x1') to (x0, x0*) by ul- pl(xO, x0', x1, X1*) and the 

times of the first and second Impulse by tl(X,,, x0*, xl, Xl* ) and *'(X0, 
. 

X0* Xl> XI ’ ) respectively, we obtain 

ment Efatteebo%d&i ff$) '>" 
Let point B be on the rectilinear seg- 

t' = 0, t2 = T, p1= Pl(X~, SE.) for T < t, (7.1) 

t’ = 0, t2 = t,, p1 = p1 (x,9 +'I for T > t2 (7.2) 

If F .falls on the curvilinear part of the boundary, then 

t’ = T - T (xE, xE’), t2 = T, PL.” PLr (ZE. 28’) = * i (7.3) 

Indeed we find, that the operation is, necessarily, an economical trajec- 
tory utilizing the whole reserve (In the following, construction of opera- 
tions will be based on this fact). 

Case &=~fi~,~<o. If T'rt,,thenforthepolnt R onthe 
rectlllnear part of the boundary, we have 

t'=o, t2=T, lh= Pl(ZE' +'I (7.4) 

On the curved part when T i t,, we have 

tl = T - T (X& ZB’), ts = T, IL1 = ,h (xEv xE ) (7.5) 

On the straight part when T > tp, we have 
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t’ = T - f2, t2 = T, PI = PI @E, +‘I (7.6) 

Caae 1,=-o, x,co . The boundary conalets of straight line eeg- 
mente 1' = 0, t2 = T,)11 G/L1 (zh' ZE') (7.7) 

C a 6 e A,,- f tcu . On the atralght part we have 
t1 = 0, t2 - T, IL1 = CL1 (ZJp z*') 

On the curved part 

t' = T - T (ZE, ZE'), p1 = cLl(ZE' z*') = fl for T <n [o (7.8) 

When ~IT/W > T > T&I , two operations are possible 

t' = T - T (ZE, ZE'), p1 = p1 (SE, 2E') (7.9) 

tl=T_ T bfi, "E') - n/o,ILl=C11[2E(T--nlo),ZE'(T--x/o)l 

Case &>O * A,rO. In ihis case point B can only be found on 
the straight line portion (cab,) and (baa,). Velocity of penetration can 
also be directed inward only on the open segment (a,b,) of (bsa,) 

Therefore, as already remarked In Section 6, the properties of economical 
trajectories which, when their termlnal point falls on the segment alao may 
become no longer unique, are not particularly interesting 

t' = 0, t2= T, 1"l = ILl(ZE,Q') (7.10) 

Case x,<o, x,-o. We have the repeat of case (7.5) 

t' = 0, t2 = T, w = PI @E, ZE’) (7.11) 
Caae A,- A,- 0. 

t’ = 0, t2 = T, Pl = Irl-(z& ZE') (7.12) 

Formulas (7.1) to (7.12) describe the functions pl, t1 and t' In terms 

of the functions I($, r*) and u~(x, r') investigated In detail at the 

beginning of this paper. 
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