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In the present work the authors continue the investigations [1 to 6] of the
time-optimal operations in linear systems wilth constant coefficients. The
control vector 1s assumed to be one-dimensional and bounded with respect to
-the "impulse" [6]. This means that the time integral of the modulus of the
control vector does not exceed some positive constant # . Second order
systems are investigated and the conditions of existence of time~optimal
operations (*) between the points (x,5 , X20J) and (x,, x;) of the phase plane,
are determined. We show that, when these conditions are satisfied, then an
operatlon of duration T(xw s Xm » Xy, Xz) 1S actuated by the impulses

My (X0 s Xpos Xy, xz) and palaye » xa0, ¥, x2) , the number of which is not
greater than two. Conditions of continuity and differentiabllity of the
functions T, u; and g and of the functions £ (xy ., Xa0, X1s Xp) and
t?{x0 » ¥20, X, xz) defining the relation between the time of appearance of
the impulses u; and u, and the coordinates of the initial and final points
are derived; & geometrical interpretation is also given.

1., Let the system of equations

dxy dz, F
—i = i+ 67+ by, T= = dnTy + Gy + Oy

be given, where u, 1is a scalar control. Directing the xy-axis of the baslc

coordinate system along the vector 2,41 + 2,3 , we obtain, using the same

notation, dx dzx
lzy , 2 __
5 = 0y Qrals, —p = an71+ @ty -+ by

If @a,,# G, then differentiating the first equation with respect to time
and eliminating x, and dx,/dt , we obtain

diz dx,
d—t;+b‘a-r+ cry :dul

If, on the other hand, a,,= O , then the above elimination is impossible.
In this case however, x, 1s independent of u,, and the system 1s under

*3}  From now on the term time - optimal operation will also be referred to as
"operation”.
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incomplete control [3]. Let us assume that the system is under complete
control, and Introducing the notation
r=uzx, 2z =dzr /dt, du -=u, z - dzr]dt
we arrive at
4+ b f+ex=u (1.1)
for which we shall seek, at first, the operations from the point (0, 0) to
the point (xo, Xo') on the class of all possible scalar controls with integ-

rable modulus, subject to the condition
oo

\ lulde<t (1.2)
0
Let us consider the homogeneous equation
zr +bx+cx=0
and i1ts normal system of independent solutilons
r = ¢,@; (1) + cx@2 (8), 9, (0) =1, 9, (0)=0
T = ¢,y (1) + @y (B), 9, (0) =0, @, (0) =1
In [6] the author discussed time-optimal operations from the point (xo,xs )
to the point (0, 0). Rephrasing the conditions of existence of these opera-

tions [6] for the problem of striking the point (x», xo') from the point
(0, 0) , we obtain a theorem.

Theorenmn 1.1 . Time-optimal operation between the points (0, 0)
and (xo, Xo') exists if and only if numbers o¢,°, ¢,° and 7T > O exist,
which solve the problem

min [max|e,@, (T — &) + .9, (T — |1 =1 (0<tgT)

C1,C2
€,y + 7y = —1 (1.3
If ¢,°, 02° and T > O solve the problem (1.3) and 7T has the smallest
possible value, then 7 4s optimal, the optimal control u° 1s impulsive,
and is glven by Formula
wW=pb@E—t)+...4pmd@—1tm
where 6(t — ¢*) 1s the impulse 6~function, and ¢!, ..., t" are roots of
e’y (T — 8) + ¢2°%s t—")|=1

Sum of modull of control impulses u, reaches 1ts maximum

il 4o F | =1
for all finite points, except the points lying on the open interval x¢= O,
— 1< x°< 1 . The latter are possible terminal points for a fast operation
with the time T =0 , and (u,| <1, |uz| =0 .

Obviously, an arbitrary time~optimal operation commencing at zero, must
be actuated by a nonzerc impulse u, . Consequently, t!'= 0 , and

1s rulfilled. [expe (T) + @, (T)| =1
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Let us now disregard, for the time being, tiie second equation of (1.3)
and putting 7 > 0 , let us look for the solutions ¢,%, e,°, t*, ..., t* of
the problem <1~4)

max [,y (T — 1) + ey, (T — )| = 1, 6,9, (T) + €9, (T) = + 14 O<UIKT)

If they solve the above problem when the right-hand side of the second
equation of (1.4) 1s equal to —1, then — ,%, —p,%, 2, ..., t® solve
the problem for + 1 . Let us therefore conslder the case of — 1 only.
With this assumption, a constant o, (01: eas T) always exists' such, that the
identity in ¢

P (T — ) + ¢, (T — ) = — @y (— £) + 39, (— 1)
is fulfilled.

Let o5, t*, ..., t* be the solution of the problem

max | — @, (— 8 + e (— )| =1 (<t (1.5)
Then Equations

a1®s (T) + ey, (T) = 1, | 1@ (T — ¥) + s (T — t{) =1

can be used to find ¢,;% and o,°%.

2. We shall attempt to solve the problem (1.5) by assigning various com-
plex values to the roots A, and X\, of the characteristic polynomial of (1.2).

1) The roots are complex, with positive real parts

Ma=p 4 io, 2B=—5>0, 0<% < 4e
In this case it 1is convenlent to replace o; with the phase shift o
@ (T — ) + @ (T — t) = a (¢5, 1) = — exp (—P1) cos (p — ) (cos@)™?  (2.1)
Since the function afey, t) cannot be less than - 1 when ¢ increases,
then a*(ps, O) 2 O . This limits & 1in the following manner:
— ¥ s o = tan~*(8/w)

For any admissible o , the nearest maximum cf the function a{yw, ¢} is
reached when t(p) satisfies

ot@=n-+¢— /o)
Value of the maximum of u{p) of the function aflg, t{p)} 1s given by

p@ =exp[B/o)(m+¢— w B/0)](cosp)cos [ (B/0)] (22)

a direct check that u(p) Ancreases as ¢ decreases and will be always posi-
tive over the variation of ¢ within — < @ < tan"?(g/w) , 1s easy. From
{2.1) we see, that 1f u(p) < 1, then |a(p, t)] < I for all ¢t > O . Hence
the solution of our problem must be a function, the maximum of which u{ep)=1.

Let us now consider a(go, t) such, that u(gpe) = 1 . Then, putting
t(po) = ty we obtain the identity

a8 @y =9ty — )
Assuming ¢t = O , we have
Py (ty) = —1 (2.3)

From the above we see, that ¢, 18 the smallest positive root of (2.3},
which obviously always exists since g > O , and when ¢t{p) < t,, maxu(e)>1.
This means, that for any 7 < t,, variation in ¢ will produce a{p, 7) = 1.
If, on the other hand T > t,, then a{p,, t) is the only solution to the
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problem (1.2). Returning to the initial notation a{ey, c2s t) » we obtaln
the result.

If T s t, , then t? defines the instant of the second impulse which is

equal to I , and
€1°Pa (0) + 2"y’ (0) == ¢° =1
If T >1t, then ?=1t, while (T — ty) + @3 (T — ;) = 1.
If the roots are real and positive, then the situation 1is exactly the
same, and the proof is analogous. !

2) Let the complex roots have negative real parts

M= toi, pLO

From {2.1) and (2.2} it follows, that for any admissible value of
p s tan" (g/w), max u(p) > 1 . This means that all the admissible functions
are monotonous and t° can only be equal to 7T . In the present case how-
ever, the instant ¢* 1is bounded from above and corresponds to the smallest
admissible maximum u,étan“(s/b)) , for this value of the angle, o’ (o, 0) =0,
hence a{(m, t) = — ¢

Consequently, the maximum admissible value of 7T = t, can be found from

Py (—tg) = —1 (2.4)
and ¢, will be the smallest positive root of this equation.

This means that for 7T s ¢, , the instant of the second impulse t*°= T ,
and ¢gp,=1 . If T> t,, then the problem (1.5) has no solution. The same
result 1s obtained if X,< X < 0 are real numbers.

3) Let the roots differ in sign, and be different from zero, i,> 0,
X< O,

In this case
a _ x}e—}qf 4 kxe—)&gi e—llf o e"lzf

-t €3
M— A A — he
Conditlion 2°(0, e3) 2 O results in XA+ Ag— oy O .
The derivative a°(t, ¢,) can become equal to zero for ¢ > O only, when

a (2, C3) =

(Ai=Aa) A — s 1
¢ Aa? — cadg =

This inequality is fulfilled if and only if ¢,< Xy, in which case a(t,q,)
has a maximum wu(es) at the point ¢ = t(s,) , and

a (1, ¢3) = p (cPy (¢ (ca) — 2)
is true.

The condition of maximum of & {t{es), 0s) = O, gives — ulos)e < O .
Since ¢ = A A,<0 then u{ea) < O . This maximum is unique and when
t > t{e3) , the function alf, ¢;) tends to — = .

If 04> A3 , then a{t, ¢;) increases monotonously to = . Obviously, at
any T , time of the second impulse ¢? can only be equal to 7T , and for
any T , two values g¢3'> A, and ¢,°< A, can be selected, such that
«ai{l, ¢t} = + 1, corresponds to the first value, and a (T, ¢2) = — to the
second.

Returning to the initlial constants e, and g,, we obtain 2 =T, ¢! = 41,
et = —1,
4) Let the roots X, = + tw be purely imaginary.

Reasoning as in (1), we obtain that, when T < n/w = ¢t,, the solution of
(1.4) 1s of the form ¢, = -+ 1,42 =T, If T = w/w , then some other solutions
may appear. Below we shall show that operations with time 7T = n/w do not

rexist.

5) Let x,> O, ),= O, then, we have



770 L.M. Markhashov, 0.V. Plotnikova and G.K. Poghaw!tskil

At [4:3 C3
t, = ) 2
alt, )= " =%

Condition a°(0, ¢,) 2 O gives ¢,s A, and a{t, ¢a) becomes a nondecreas-
ing function with the limit value of ’?3/;\1 as t -~ =, Consequently, ea<—*i,
can always be expressed so, as to have a7, @) =1 . This willl be the

first solutign of the problem. Second solution es= A, gives a(t, ¢5) =—1.

Hence, the first solution is £°= T , pe,= 1 , while the second one is
pp= — 1 (o < t?®< T} , and the instant £° remains undefined.

6) Let Xz< O, A\;= 0 . Using the same scheme, we reach the conclusion
that two solutions of (1.%) are possible. They are

eg=1, ##=7T (Pirst solution) ¢y = —1, 0 <2< T (Second solution)
7} Let X;m» Ay= 0 . Then

=1, 0< 2T (Pirst solutlon) ¢, = —1, 0 <2< T (Second solution)

In the following we shall show that in cases (5), (b) and (7), time-
optimal operations must have ¢2= 7 , i.e. the second impulse occurs at tl)e
last possible instant.

3. Let us now return to the problem (1.3)
min max |6, (T — &) + 60, (T — ) |=minfle, ¢, N =+1 O0<IKT)
Cre Ly Cis €2

6Ty + oy = — 1

Let ¢°, ¢°, T, 2, ..., t* be the solution of (1.3), then for all x,, xq
except xo= £ ©2{(7) and xo'= % g,°(T) , a root t? exists. Indeed, if the
value of unity could only be reached at ¢ = 0 , then such translation along
the stralght ¢yT, -+ cho. = — 1 on the ¢,0z2-plane not colneciding with
the straight line @g(T) + €@ (T) = + 1, could lead to flcy, ca, T)<1;
this contradicts the the initial assumption that ¢,°, ¢,°, 7 1s the solu-
tion of (1.3).

1) Let My=BFwi; >0, T, then the stralght line ¢,x +oo¥0 =
= — 1 must pass through the point of intersection of

@ (T)+ e (T)=—1, =1 (3.1)
or through the point p of the intersection of
a® (T + oo, (T =1, ey= —1 (3.2)

Lines (3.1) and (3.2) farm a parallelogram 44'BB’. Pencils of lines
CyXo + CaXo= 1 passing through points 4 and R , have the equations

k(e®s (T) + ea®y (T) £1) + (e + 1) =0

where k 1is the parameter of the pencil, and upper and lower signs corre-
spond to the points 4 and F , respectively.

The line .¢,xo + CaXo = — 1 cannot however pass through the inside of the
angle B‘44°, since a small displacement along such a line into the paralle-
logram A44'BR’ would make J(c,, ¢2, T) < 1 . These lines correspond to
nonpositive values of % 1in the pencil, On the other hand, when all the
points on the lines belonging to the pencil except the points 4 and &
have nonnegative values of % , then J{ey, ¢z, ) > 1 . From this it fol-
lows, that the solution to (1.3) for any of these lines lies elther at 4
or at B .

The condition that % = O on the xpxo* ~plane gives rise to two seml-open
stralght line segments
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 +1 % 0L <92 (T)

. (TY+1 (T’ — 1< <@ (T)
IO"*'i — Xy 0<20<—-(P2(T)
— @ (T)—1 @)’ 1> 20 2 — @2 (T)

These segments [a,, d,) and [b,, @,) are shown on Fig.l, and represent
the set of terminal points of operations with time 7 .

With 7T changing from zero to t,, these segments rotate about the points
b, and @a;, and thelr end-points 4, and b, trace the curves xo= +9,(7T
and xo°= % ©2(7} , which we shall, from now on, denote by ¢, and . .

1f T > t,, then, as shown before, e, and ¢, can be found from

@ (T) + @ (T) = —1, e@ (T — 8) + @ (T —t,) =+ 1

or from
@3 (T) + &9y (T) = + 1, @ (T — t) + 3@y (T — 1) = — 1
Using analogous considerations, we obtain two other segments [acbs) and

{b,a5) representing geometrical loci of the end-points of an operation of
duration 7T > t, . These segments are tangent to &, and (G, at the points

b, and as .

It 1s easy to see from the geometry of the system that, whatever is the
point X5, xo' , 1%t can, for some T , be found elther on the segments [a,d, )
and {bzalsﬁ or on [a.fﬁs} and [ 2,85 ). Hence, time-optimal operation always
exists, Time 7T s ¢, and the impulses i, and up= {1 — Ju;|) can be found

f . : . s . .
ron (2o sign zo) = p, @, (T), (2o sign zo) = py (@, (T) + 1) — 1 (3.3)
If on the other hand I > t,, then we have

ZoPs(ts—T)+ 2o@a (B —T) P
sign [ﬂ?o(Pg (tg —_— T) + xo‘gg' (‘g — T)l Pz ( 2)

(3:4)

P2’ (fa —T) + 20'Qa {ts — T) - 0t
. — =P () +1)—1
Sign [l (b — T T oo 10 D (® (9 FD
For any I , the curves @, and (. together with segments [ap?,) and
[b,a,) or with [a,b;) and [b.,85) , define a convex region D(T) , which shall
be called the region of attalnability. We shall show later that during the
time ¢ < T , no admlssible control can steer the operatlon across the bound~
ary of this reglon, but any interior or boundary point of D(7) can be
reached. }
-

ar

g N\

(%
303

&

Fig. 1 Fig. 2

On Fig.l, the curve og,030s represents an operation (this notation is
also used to describe a curve representing the operation on Figs.2 and 7)
into the points ¢; in time T < ¢,, while od,d.d, represents an operation
into d, in time T > ¢,
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2) Let A = P £ o, ﬁ<:(1 Considerations similar to the previous ones
give segments [@,2, ) and [b,a,) with fixed end-points b, and a, , the other
end-points a, and b, sliding along the curves @, and (. together with the
image point (Fig.2). In this case however, changes of the region D(T) will
terminate at the instant ¢, . We should note that ¢, is the smallest posi-
tive root of Equation ¢,(—t,) = — 1 . Region D(t,) represents a set of
terminal points of all possible operations. No operation terminating in a
point outside the region D(t,) is possible and it will be shown below, that
such point 1s completely unattainable. Time 7T and the impulse p; of the
operat%on ?erminating at the point belonging to D(tz) are found from Equa-
tions (3.3).

3) Let X;> O, Xz< O . 1In this case all four vertices of the parallel-
ogram on the ¢,¢; plane formed by the lines

a @y (T) -+ ¢y (T) = + 1, = +1
E N are admissible tc the line e,xo+ ecaXo = — 1

Admissible orientations of thls line at the vertices
A and p , give rise to the segments [a,b,) and [ba,)
of the xx' plane,while at 4’ and R’ they gilve rise
to (a,a,] and (b,b,] . These segments form, on the

s xx* plane, a parallelogram a,a,5 b, (Fig.3$.

Time 7 and the impulse u, are given by (3.3),

7] x however the slgn of the impulse u, acting on the point
Xo, Xo," of [ayd,) differs from that of u, acting on
the polnt x,. Xe¢, of (@,6,] . When T = = , the
parallelogram becomes the interior of a strip bounded
by the lines x*+1 = \;x .

b,

! 4) If A=+ tw , then for T < n{w we obtain,
in the analogous manner, region D(T) bounded by ellip-
tic arcs

b G,,_[z= +sinor, £ =Ftocsor; 0TT]
Fig. 3 (Fig.4) and segments [a,b,) and [b,a,) . When 7T=n/w,

the ellipse becomes complete. Obviously, T 1s always
smaller than n/m , since any point inside the ellipse can be reached in the
time ¢ < n/b . Functions 7T and u, are given by (3.3).

5) Let X;> O, Xi,=0 . As before, we obtain the segments [a,?,) and
[2,2,) . The second solution of (1.5), ep=—1 1in
T which ¢, and ¢® are undefined, remains to be inves=-
g, tigated., The line ¢yx0 + ¢caxo=— 1 cannot inter-
sect the line ¢u,= — 1 , because at gya=—-a > — 1 ,
Cr we have [f(cz, T3 < 1 . This means that xo= O and
xo'= 1 , and an operation terminating at this point
has zero duration. Hence, second solution does not
give any new operations (Fig.5).

0 () T The parallelogram a,@,b, b, is the region of
attainability D%T) and as T - « , it becomes a
strip 2 — 1 < Mz <2 + L.
6) If Ay< O, Xi;= 0O, then the parallelogram
a,az b, b,,1s also the region D(T) . Second solution
2 of ?1.5 ez= — 1 does not lead to any new opera-
F1 4 tions. As T - » , 1t becomes a parallelogram
g. @,8,05, %, (Fig.6) with vertices azb, on the x-axis.

7) If A,= Ag= O , then the sides a,2, and b D, of a,a,5, b, are paral-
lel to the x-axis. From the geometry 1t 1s clear, that the operations ter-
minating at the points of the segments [a.2;) and [b,a,) must have ¢*=T
As T - » , the parallelogram becomes a strip — 1 s x*s+1 (Fig.7). 1In
cases (5), (6) and (7), T and u, are, of course, glven by (3.3).

kol
~

4, Before beginning to discuss the continulty and differentiability of
the time of duration of the operation 7T(xs, xo) , of the first impulse
u; (%0, Xo°) and of the instants ¢*(x,, xo') , t°(x, xJ) , assumed to be the
functions of the terminal point, we should note that ¢'= 0 and ¢3= T ,
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since t*a= ¢, . We shall therefore concentrate our attention on the func-
tions T{xo, %o').and u,{xo, x¢) . We shall divide all the points x,, xo°
into the groups of interior, boundary and exterior points. The open segment
Xom 0 , — 1< xo°<+ 1 will correspond to the boundary points together with
G, 1in case (1), with the boundary of D{t,) in case (2}, the lines xJ1l= i x
in case (3), the boundary of D(m/w) in case (4), the lines xo’' % 1 = A\, x in
case (5), the boundary of D(=) in case (6) and the lines xo="%# 1 in case
(7). All points which, for some T , lie within 2(T) will correspond to
interior points and 2ll the remaining ones — to the exterior points.

Pirst we shall consider the interior point x5, xo.
In all cases (except (1) when T > t,) the operation
can be determined by (3.3). Assuming for definiteness
a that x> 0 in (3.3) and differentiating both parts,
we obtain

dzy = @, (T)du, -+ W@y (1)dT,
dzy = [t + @5 (T)lduy -+ w@y” (1)l (4.1)

Assuming that (4.1) represents a system with unknowns
duy and d7 we note, that 1ts determinant 1s equal to
zero if and only if a constant ¢ exists, satisfying
the equalities

0 (1) + 9 (1) = —1, e (1) + g, (T) =0

Using the argument similar to that of Sectilon 2 we
find, that 7 satisfies Equation ¢, {(— 7) = -1 .
b, This can only happen in case (2) when ¢,= T . Since
Fig. 5 the point is interior, the last equation is impossible,
° hence,the determinant is not equal to zero. Conse-
quently, the operation defined by (3.3) exists in some
neighvborhood of x5, xo*. This means that for any interior point, partial
differentials of T and u, exist, and are defined by (4.1).

Analogous consideration for the case (1), T > t, leads to the same con-
clusion. Next we shall consider the boundary points, Passing to the limit
in (3.3) a8 z— +0, zy—¢a, (0 <{a<'{), gives, in the 1imit, T= O, u,=#(1:d.
Substituting these values into (4.1) and remembering that the signs of the
left-hand slides should be changed as xo~ — O , we obtain the limiting values
for partial derivatives as xp—= + O

YT + 2 6T-U Qﬁlhfi,g Ny

s

1

= = j—

[ -2

drg T l4a’ Oz " 9z

Case h:=Pp+io(B>0) also, we shall assume that the point (xo,xs)
coincides with the point 2; (Fig.l) of the boundary curve G. . Putting
now Z7,= 1im 7 when (xb, Xo') - b¢ from the direction of the origin of
coordinates and T.= lim 7 when {xo, xo) - b5~ from the outside, we see
directly from (Fig.1) that 7.— T,= ¢, .The derivative of 7 in the direc-
tion DPsa, is equal to zero, and the derivative in the direction of the tan-
gent to (. , equals unity.

Angle o between the tangent and the line bYsa, , 1s always less than m,
hence the inner normal derivative satisfies Equation

@
=

. /
T
{ n

|

)cnsx——shnx 0
+

o

b3

Fig. 7
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and 1s, together with (aul/an)+ , bounded. The positlon 1s different however
with the bound of the outer normal derivative. Denoting by 8 the angle
between the integral line and b;e, , we obtain

o7\ .

—— | sinf3-—cos 3 =

(\(,m)_ B—cos 3

Since B8 - n as (xo, X' ) —~ P, the normal derivative tends to = , and

this also applies to (au/2n). .

The remaining cases fall to show any fundamental differences, therefore
we shall Jjust state the results.

Case M=Pp+io,<0. At all points of G, and G. except ixo= O,
xo*= + 1 , the inner derivatives exlst and are finite. They tend to =
only on approach to the points a; and b, , where the boundary becomes recti-
linear. On the rectilinear parts of the boundary of D(t,), inner normal
derivatives are infinite.

Case A=+ tw . Inner derivatives exist at all polnts of the bound-
ary elllpse except the polnts xo= 0, xo' =2 1 ,
Case A;> O, X< O, At points xo= 0O and xo = + 1 derivatives

do not exist, Limit values of the derivatives on approach to the points

ro't 1 = A\, x, can be found from Formulas (4.1).

Case Az> O, X;= 0 . Properties of boundary derivatives follow (5)
of Section 3.

GCase X,<O0, X =0 . Properties of boundary derivatives follow (6)
of Section 3.

Case Ay= O, Xo= O . In this case u, and T are explliclitly given
Wy == (1 — xf') sign zy, T = ____‘?‘_l-f:‘{_l_.,
2 [ 1-} 2 sign |
which describe all their properties. '

by

5. Two important remarks must be made. A hit from the goint (0, 0) to
the point (x,, Xo') in time 7, 1is possible if and only if (8]

min max (@ Ty — )+ s T1— )| =42 Ty =1 (6.1)
¢y,cp 0T,

This means that, -1f the hit is possible, then the decrease of I, to T
such that A(7T) = 1 implies, that fast operation is possible. This in turn
means, that the point can be hit only when a fast operatlon terminating at
this point 1s possible. If (xg, xo° ) 1lies outside the region 1lim D(T) as
T - » , the hit 1s impossible at all.

Let the initial "reserve" be different from unity
[e o]
Sluldt<M>0, M£EA
0

Changing the variables Mu,=u , Nx;= x we find, that the statement of
the problem in the u,, x,, variables is identical to the previous one.

Hence . 2 z zo
fee Mpy [T % T’:—_T(_" _)
w = (5 5 Mo M
and the regions of attalnablility can be obtained from the regions described
previously, by M-tuple similarity transformation along the x~ and x°*-axes,

Now we shall consider the general case of an operatlon from the initial
point 4(x,, *,°) . A simple geometrical interpretation can be employed.
let the point 4 move from the initial conditions x,, x,° along the inte-
gral line of Equatlion x"+ 2x*+ cx = O

zy =29, (1) + 2,9, (1), x4 = 291 () + 7 P (D) {5.2)

We shall consider consecutlve positions of the point 4 with increasing
t and construct, for each of these positions, a region of attainabllity
Dy(t) with its "center” at 4 . The set of closed regions Dy(t), O st< 8
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also forms a closed region (*) ¢(¢,) . An operation T(xp,..., x,') term-
inating at any interior point of thils region, 1s possible. To shed more
light on the properties of the function TI(xo,..., x,° ) , we shall 1investi-
gate the structure of the boundary of C(tl) in more detail.

At any time ¢, , the boundary of ((¢,) can be composed of segments of
the following types.

) Boundary of D,(0) 1s a line
A

z=2z, ¢ — 1 <2<z +1 5.3)
and the boundary of ¢(t¢,) may include parts, or the whole of this line. In
the following however, when the curve 1s stipulated, the last condition shall
not be discussed.

%) Trajectories of vertices a, and b,
z= 24, =z, +1 5.4)

%) Families of envelopes of the cu;vilinear segments of the boundary.
Obviously, such an envelope will be the integral line of Equation x"+bx'+qx-0

T = P+ afs, T =9 + 69, (5.9)

49 Pamilles of envelopes of the rectilinear segments of the boundary.
We shall write the equation of such a segment as

T—zp=Fhp (), -z =A@+ )FA (5.6.1)

or in the form
T— 24 = F+A[Qa(t) — P (¢t — t2)] P2 (t — 1)
F—xy = Ao () — 9 (0 — )] 192 (¢ — 1)

for the case (1) when ¢ > t, . Here O < X =1 1s a positive parameter,
and the first combination of signs corresponds to the segment (b‘azj (or
(¥s2,]) , while the second one to the segment (a,d,] (or (asbd,

Differentiating (5.6.1) with respect to ¢ with x and x° kept constant,
we obtain _ I‘A — ix% +Ag', _xA.. =4+ @s +1) :tMPz" (5.6.3)

Substituting X obtained from these equations into (5.6.1), we obtain
equation of the envelope which will coincide with the boundary only when
x?t) which 1s a solutlon of (5.6.3), satisfies the inequality O < A(t) s 1 .
This conditlon is necessary for the point of the envelope to be on the bound-
ary of D,(t) .

5°) Pleces of the boundary of DA(tl).

In general, construction of the region O(tl) 1s difficult in the sense,
that the equation of 1ts boundary will depend on five parameters, namel X,
and A, which are the roots of characteristic equation, x,/¥ and x,/¥
which are the normalized coordinates of the initial point, and on ¢, . With
the above parameters fixed, we must construct all the curves (5.3) to (5.6),
together with segments of the boundary of DA(tl) for 0=t < ¢, .

Some of these curves may be found to be completely inside C(tl) , while
others may have some of thelr parts lylng on the boundary.

The set of these parts constitutes the boundary of the regilon C(tI). We
should note that a segment of the boundary of ¢(¢,) may be found inside the
reglon C(t{) when t¢)/> ¢, . This most certainly will happen to the parts
of the boundary representing segments of the boundary of D4(t,) . When
ty'=t,+ At , they will completely penetrate into the region Ctt1+ At) with
exception perhaps, of the end-polnts of the sectlons of curves composing
this segment. It is Intultively obvious, that at any interilor point of this
segment time of the operatlion will depend continuously on the initial and

(5.6.2)

*) When t = 0 , the region of attainability 1s represented by a segment
x =x, ~1l+x'sx=<x"+1 and it can be regarded as a closed segment
of the boundary.
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final point, and will be continuously differentiable at all its interior
points except the vertices.

Returning to the parts of the boundary
of the type (5.3) to (5.6) we shall note,
that any interior point of such a part can
be found inside the region ¢, {t,+ At) only
for some finite perlod of time At or, it
may, durlng the whole period, remain on the
boundary. From this it follows that, if at
t = t, polnt (x,, %o ') 1s the interior point
of the part of the boundary of the type
(5.3) to (5.6), then time of the operation
terminating at this polnt, exhibits a dis-
continulty. If the point lies at the end
of one of the pleces, then the time of oper-
ation can be continuous only, when this point
is also the end-point of the part of D,(%,).

As an example of construction of a reglon
¢(t,) , we shall consider the case

Xuz —L—L‘, 2,<0, 2y >0, 52+ 52> 1.
The region -C,étl) {(¢t.< n) 1s bounded by
aa,a,d e (Fig. g, while region ¢, (n) 1s
bounded by ab’b*d’de .

Its boundary is composed of:

A segment ea which is D(0) of the
type (5.3§-

Parts of circles aa, and eb, with
radil R = V z?+ z,¢ and centers on the
axis x =0, xa3=+ 1 . They are the tra-
Jectories of the points 4, and b, , of the type (5.4).

Parts of circles b’d” of radius R,= R + 1 and d‘d” of radius R,=R-1
with centers at the origin. They are the envelopes of curvilinear parts of
the boundary and are of the type (5.5).

Broken line @ a.d which is a part of the boundary of ‘DA(tlz and con-
sists of an arc of a unit circle with its center at the point A4(z,) and a
straight line segment a,b,. Last two parts are of the type (5.7)

Unit semi-circle »“d” with center at A(n) . This is the part of the
boundary of DA(tl)

Fig. &

6. Let us now donstruct some analytical criterions of contilnulty and
differentiability of the functions

T(zy, .. %), pa(zy, ..., 7)), (2, -« o 2y), (2, .. ., )

Here 1t will be convenlient to use a moving coordlnate system 4xx°, its
origin at the point 4 and 1its axes parallel to the axes of the basic sys-
tem. The termlnal point P of the operation will, with respect to these
axes, move according to

zp = Ty — z,4 (1), zg = Xy — x4 (1)

In the following, all coordinates and velocities of the points will be

considered in the new coordinate system.

Let us introduce the velocity of a point belonging to the rectilinear
pari of the boundary of 7n,(t

n= ¢ (VA = 10 (Dr O<rs)

On the curvilinear parts of the boundary, i.e. on G,, we shall assume
A = 1 , and we shall call the vector whose components are

. =z — v — 4, z, = zg — ¥y

the "velocity ot penetration”.
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If the first intersection of the boundary of the region with the trajec-
tory .z takes place at the point (zE, z;') belonging to the rectilinear
segment of the boundary and the time is 't = ¢, , then the value of the para-
meter ). can be found from Equations

zg = A, (1), zp = Alp () -+ 1) +1 6.1.1)
or, in case (1) of Section 3 at ¢,> ¢ , from
zp = AP () — P2ty — B)] P (ty — 1) (6.1.2)

g = A g () —o (h— ) Lo (4 — 1)
Second equation of each system covers the case, when the first one becomes
an identity.

We shall also consider the regilon D, (t,) no longer as a set of terminal
points of operations when the time 7 ty, but as a set of the end-points
of economical trajectories with fixed time ¢, and minimum value of

o0
min S jujdt=w
o
Lemma 6,1 . When v =1, the set of the end-points of economical
trajectories represents the boundary of the region D‘(t,) , while at <1,
the boundary contracts by the factor of 1/v .

To prove 1t, we shall first obtain, repeating exactly the reasoning of
{63, the following theorem.

Theorem 6.1 . The necessary and sufficient condition for the
economical trajectory from the point (0, 0) to the point (x,, x¢) with fixed
t and y = 1 to exist is, that 4,° and o2 are solution of the problem

min max|e,@, (f; — t) + 9, (¢, — )| =1, &1y + €%y = — 1
5, Cp OIS

If o,° and o§ are the sclution of this problem and ¢!, t?, ..., t*
are the roots of the first equation, then the economical control 1s impulsive
and sum of the moduli of its impulses |u,| + ... + Ju,| = 1 . Omitting the
details of construction of economical trajectories as they are almost an
exact repeat of those given for the operations, we shall just quote their
properties.

Economical trajectory terminat at the rectilinear part of the boundary
coincides, in all cases except (2) {ReA < O, ¢,> ¢t,) , with the operation
terminating at that point.

Economical trajectory terminating at the point on the curvilinear part
of the boundary or at the point on the rectilinear part in case Re A < 0O,
t3< t3 , can be constructed as follows.

Let (x5, %°) 1ie on the curvilinear part and let T{x,, xJ) be the time
of the operation terminating at that point. Then, the economical trajectory
follows geometrically the path of the operation, but ¢! — the instant of the
first 1mg~ulse Iy ] = 1, 18 delayed by the amount of time resulting in
ti= ty— T(xo, Xo°) -

If, in the case (2) [Re A < 0, ¢,< t,], {xo, x0°) lies on the recti-
linear part of the boundary D(f,) and ¢,> t, , then geometrically operation
coincides with the economical trajectory, but tl= t,— ¢, .

In case Ay = +iw, 4 >%/0 , economlical trajectories are no longer
single-valued, and an economical trajectory terminat at the point {(xo,xs)
ean have its first impulse either at t'= t,— PT(xy, Xx3) or at &'~ ¢,

- T(xo, x3) — n/w . S8Such cases may occur when Re A,= O , A;> O , or when
Re Agm O , 43> 0, or A= A= O . Later we shall see, that detalled amlysis
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of these cases 1s not necessary.

Turning our attention to vi{xs, xo t, ) which represents the consumption
on the economical trajectory originating at zero and which we shall consider
as a function of the terminal point, we shall state some of its properties
without proof.

At any fixed ¢,> 0, funetion v(xy, xo', t,) exlsts over the whole space,
is positive definite and becomes infinitely large as xy%+ xo°—~ » . For any
given 3, , v (zy, 24, 8) 2> v (2 2o, 1), 0 < &

Geometrically it is obvious that the lines V¥ {Zp %y, #;) = % = const > O;
represent the boundary of UD(t,) transformed sx-times. Denoting by ¢ the
angle between the radius vector of the point (xo, xo’) and the x-axis andly 6
the angle between the x-axis and the tangent to the boundary, we have

Liad cos P -{~iv._sin\p ==Y ==const, ‘,j_v cos 0 -4 —al sin® =0 (6.2)
829 axo VI 72 Oz Oxg

Determinant of this system A = sin(y — 8) is different from zero, since
the angle between the radius vector and the tangent ¥ — 8§ 1s contalned
within the limits O < § -8 < ¢

Angle @ wundergoes a discontinucus change at all vertices of the bound-
ary, consequently derivatives B\:/qu and av/axo' are also discontinuous.
First formuls of the system (6.2) gives a derivative in the direction of the
radius vector, the second one — along the boundary.

Returning now to the initial problem, we shall prove a theorem.

Theorem 6,2. If the veloclty of penetration vector is directed
into the region U(¢,) , then the time of operation T{xo, ..., x,") 18 a
continuous function of its varisbles, If, in addition, point <f intersection
(zg, $E) of the trajectory of the point p with the boundary of I(t,) is
not & vertex, then T{xs, ..., %) 1s also continuously differentiable. If,
on theé other hand, the velocity of penetration is tangential tc the boundary
or is directed outward, then the time of operation is discontinuous.

Proof . Time T of the operation is the smallest positive root of
v (zg, g, =1 6.3)
zp = Ty — Py () — 2,9, (2), zp = zy — 2@, () — T Py (1)

If the veloclty of penetration is directed into the region, then for

small At, we have
v{zg (T + At), xB‘(T+At), T+ Aty <1

This means that a continuous solution T(xo, Xo'» X1, %) of Equation (6.3)
exlsts near xp, Xo'» X3, %' . Differentiating (6.3), we obtain

v v A 6.4
5_;3de+ gggd:tB«-r srat=0 6.4)

dzg = (zg" — zo)dt - dxo — @1’ (t)'dx{ — @2 (2) dz’y (6.5)
dIB.,z :cB“ dt -+ dxy — @1 (t) dzy — (pz. (t) d:cl'

Partial derivatives gy /dzp and dv/drp’ exist and are continuous at all
points except the vertices, and the coefficient of d¢ 1in (6.%) obtained
with (6.5) taken into account, is less than zero. The latter follows from
the requirement that the vector of the veloclty of penetration is orientated
in a certain direction. From this, the continuilty of partial derivatives of
T(x05+++5 %) follows.

If the velocity of penetration vector 1is tangent to the curvilinear part
of the boundary, then such e = const exists, that, when ¢ = ¢, , then
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%y (t) + (2 — ¢, (1) = 0, 7,9, () (2] — &)@ (1) =0 (6'6)
which means that €hey are 1ldentically satisfled, and point B moves along

the boundary of D(t) . A small displacement to the next integral line will
cause a discontinulty in T .

If the velocity of penetration i1s colinear with the straight line segment,
then a constant e exists such, that

—z, = ey APy, —x," = ey AP, (6.7)

These equations confirm that the point (x,, xo) lies on the envelope (5.6)
since they glve rise to the same set of values of X , as (5.6.3).

Let us now assume that the velocity of penetration 1s directed out of the
region D(t,) . This can happen only when the point ( 7, z; ) coincides
with a vertex of D(tl), since otherwise ¢, would not be the first root of
(6.3). 1If this point @, or b, 1is fixed with respect to the moving system,
then the time is discontinuous and point (x,, xo) belongs to the segment of
the boundary of the type (5.4

Moving vertex travels, with respect to a fixed system, along the integral
line of x"+ bx"tex =~ O , and the corresponding impulse 18 ;=1 at ¢*= O,
If the point (xo, xo) lles on this line, then it is clear that when t = t,+A,,
its veloclty of penetration is tangent to the boundary, and the time of oper-
ation 1s discontinuous.

At t,= O , the statement that the velocity of penetration is directed
into the region D(0) , 1s meanigless. We can however say that at the polnts
x =x,, ¥X;— 1 5 x*s x¢ +1 for which the limiting value of the velocity of
penetration vector 1s directed into the region D(¢,) as t,~ O , the time
of the operation 1s continuous, while at the points where it 1is either
directed outward or equal to zero, the time 1s discontinuous. The proof of
this is analogous to the previous case.

7. Having explained the properties of the funmction T(xo, xo' X, %),
we shall next consider all possible distributions of roots on the complex
plane. Let xg, xE' be the coordinates of the point of intersection of the
curve zp, y with the boundary of D(t,), or D(T) . Denoting as before
the time of operation from zero to the point x, ¥ by T(x, x*) and the
value of 1ts filrst impulse by u, (x,_ ¥), the value of the first impulse in
the operation from (xy, x,°) to (xo, %o') DY wy= My (X0, X0’ X1, ¥1°) and the
times of the first and second impulse by 8 (xp, *o'» %, %" ) and t®(xo,
X', Xy, %' ) respectively, we obtain

Case Ay=2f+io, >0 Let point B be on the reé¢tilinear seg-
ment of the boundary D(TS

0=0 £2=T, pw=p(zg zg) for Tt (7.1)
=0 2=t m=m(zg zg) tor T >ty (7.2)

If p .falls on the curvilinear part of the boundary, then
=TT (zz, 2g), =T, p=p(zg 2zz)= *+1 (1.3)

Indeed we find, that the operation is, necessarily, an economical trajec-
tory utilizing the whole reserve (in the following, construction of opera-=
tions will be based on this fact).

Case Mg=pf+io, <L0. If T s t,, then for the point R on the
rectilinear part of the boundary, we have

=0, 2=T, w=pu(zg zg) (7.4)
On the curved part when T < ¢,, we have
=T —T (zp z5), 2= T, M= (zg, z5) (7.5)

On the stralght part when T > t,, we have
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=T — t,, 2 =T, W= (zg, z5) (7.6)
Case A >0, Xy< O . The boundary consists of straight line seg-
ments f=0,="Tp = m(zrg) (1.7)

Case \ia= %+ tw . On the straight part we have
#=0, =T, pu=pm (=g 25)
On the curved part
=T —T(zg, z5), m=m@g rg)=4+1 tor T <n/0 (7.8)
When 2n/w > T > n/w , two operations are possible
=T —T (z5 z5), W= (zg 25) (1.9
=TT (zg 2p) —n/o,p1=p [z (T —n/0), 25 (T —n/0)]

Case A;>0, Ag=0O . In this case point B can only be found on
the straight line portion (a 3, ) and (b;a,). Velocity of penetration can
also be directed inward only on the open segment (ag d,) of (dga,)

Therefore, &8s already remarked in Section 6, the properties of economical
trajectories which, when their terminal point falls on the segment a,a, may
become no longer unique, are not particularly interesting

=0, t? =T, m = (zg, zg) (7.10)
Case XAy<O, X, =0 . Wehave the repeat of case (7.5)
th =0, 2=T, M =1 (g, 2g) (7.11)
case Ay= Agm O,
=0, t2=T, W= mzg zg) (7.12)

Formulas (7.1) to (7.12) describe the functions u,, t* and ¢? in terms
of the functions T(x, x°) and u,(x, x°) investigated in detail at the
beginning of this paper.
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